Showing posts with label break down. Show all posts
Showing posts with label break down. Show all posts

Wednesday, January 20, 2016

"Why does science have to name every little thing?"

One of the most common questions I got when I was teaching as some variation on that theme. "Why do scientists have to make things so complicated?" "Why can't they just call it something simple?" It is a question bigger than just high school level as well; one of the barriers to effective science communication and education seems to be the general "fear" of overly technical language . The general public seems to view scientists as speaking in convoluted and complex terms.

It is true that scientists have devised some very complex ways of describing things that might seem simple to a layman. And sometimes we can get wrapped up in using the terms we are familiar with when talking about our research, to the detriment of any non-technical audience. The media is also partially to blame as well, with perpetuating ideas such as all prehistoric reptiles are dinosaurs. But why do these terms exist in the first place?

This brings me to Hendrickx et al. (2015). Hendrickx and his coauthors published a paper last year breaking down theropod dinosaur teeth and analyzing many different aspects of their morphology. In addition, the authors created a standardized terminology for future paleontologists to use when describing their dinosaur teeth. Hendrickx and his coauthors explain why creating such a terminology is needed succinctly; in effect answering the question of why scientists create names for so many things.
...several pivotal theropod taxa with well-preserved dentitions still lack a thorough dental description...leading numerous authors to identify isolated theropod teeth to broad clades with uncertainty...isolated teeth are key pieces of evidence to assess vertebrate paleoecological diversity and are often used for stable isotopic studies with various applications...A better understanding of theropod anatomy and morphological variation is therefore central to help resolving systematic relationships and to provide paleoecological clues. Tooth morphology is tied to diet, which has extensive evolutionary repercussions, such as morphological convergence, more than other parts of the skeleton. Yet, theropod teeth have been shown to possess many diagnostic features of taxonomic value...Although theropod teeth seem simple at first sight, this is effectively a result of the absence of comprehensive studies on tooth anatomy and morphological variation among theropods, as well as the lack of a uniform anatomical nomenclature.
What does the wall of text mean? Basically, theropod dinosaur teeth can be used to study evolutionary relationships, paleoecology, and several other important things in paleontology, but no one has bothered to come up with a good way to talk about them.

That's the crux of scientific terminology; coming up with a good way to talk about things. Good, in this case, means usable. Terms should describe well-defined parts of an organism's anatomy. If we say, "the tip of the tooth," on a tooth that has multiple "tips", how are we to know which specific tip we're talking about? Are there differences between "wrinkles" and "grooves?"

Figure 1 from Hendrickx et al., 2015

Without understanding the distinctions between subtle anatomical differences in different taxa, how are we to find out if these features are actually taxonomically important? A quick example from the Morrison Formation. Here in western Colorado we have basically two relatively common large theropods from the Morrison: Allosaurus and Ceratosaurus. Skeletal remains of Allosaurus, including teeth, seem to dominate in the Morrison making up 3/4 of all the theropod remains (Foster, 2007). Teeth attributed to Ceratosaurus do turn up in the field, however, and are usually distinguished by the presence of ridges near their bases. Now that we have Hendrickx et al.'s paper, we can go into a bit more depth. We can say, for instance, that the teeth attributed to Ceratosaurus have basal fluting, and these flutes are not seen in the contemporaneous Allosaurus. So this may help us distinguish between these teeth in the field and keeps us from mistaking Ceratosaurus teeth (with their flutes) with wrinkled or ornamented teeth (or tooth fragments).

The description of Ceratosaurus teeth by previous authors, however, has been lacking in detail and confusing, often using different terms for the same anatomical feature. As Hendrickx et al. note, having their framework in place will help facilitate such a description and they specifically mention Ceratosaurus as being in need of such a redescription. Hopefully such a project will be forthcoming. This topic will also be the focus of my next blog post!

Going forward I am hoping to see a theropod-wide tooth catalog. While Hendrickx et al. do point out that teeth are quick to change, evolutionarily speaking, to changes in diet and feeding behavior, they also note the taxonomic utility of teeth. While many theropod teeth can't be narrowed down to a genus or species, being able to address higher-level taxonomic questions with teeth is important. In addition, some taxa appear to have diagnostic dental modifications. Doing systematic studies and descriptions of theropod teeth may yield more information on what characters are taxonomically useful and potentially add autapomorphies to established genera.

My biggest complaint is that the authors did not examine what a theropod tooth is. They identify problems with past work, the utility of teeth, and the need for a framework but there is no way to determine if this framework is applicable to a given tooth. Obviously for teeth attached to theropod jaws this isn't a problem, but the majority of the dental fossil record for archosaurs consists of isolated shed teeth. While workers in the Cretaceous and Jurassic strata have this problem to a lesser degree (though it is possible that some crocodylomorphs developed similar tooth morphologies), those of us working in the Triassic are confronted with a host of dental convergences! One need look no further than the saga of Revueltosaurus to find examples of teeth that look similar between widely divergent clades. In the Triassic there are plenty of carnivorous reptiles, many with laterally compressed teeth. While in truth the terms developed by Hendrickx et al. (2015) are likely to be broadly applicable, a brief discussion of what synapomorphies exist among the dentition of theropods would have been appreciated, so that those of us working under all that overburden could sort our rauisuchian teeth from our dinosaur teeth just a little easier.

Works Cited

Foster, John. 2007. "Allosaurus fragilis". Jurassic West: The Dinosaurs of the Morrison Formation and Their World. Bloomington, Indiana: Indiana University Press. pp. 170–176

Hendrickx, C., Mateus, O. and Araújo, R., 2015. A proposed terminology of theropod teeth (Dinosauria, Saurischia). Journal of Vertebrate Paleontology,35(5), p.e982797. 


Friday, October 23, 2015

When is a Triassic fauna not Triassic?

In recent years among paleontologists who work on the Triassic/Jurassic boundary there has been some serious excitement about a new locality in northeastern Utah that hosts a wide variety of cool fossils. It has been named the Saint's and Sinners Quarry and has been actively worked by crews from Brigham Young University in Provo, Utah since 2009. Based on abstracts and news articles it is clear that the fauna is diverse and well represented by multiple specimens. Having been at SVP in recent years I have been able to see images of the fossils coming out of the quarry first hand. Over 11,500 fossils have been removed from the quarry which Brooks Britt (from BYU) and others estimate is only 33% excavated. Virtually all of the fossils are preserved in 3D, allowing us to have spectacular insights into animals we do not have much data from, due to crushing and other concerns. Most of the specimens are even articulated! My hat is off to all of the BYU and Dinosaur National Monument crews who have been literally working on the edge of a cliff to extract these remains.

But. You knew there was a "but" coming, didn't you? But while the fossils themselves are spectacular there has been a trend in the last couple years to refer to this bone bed as being Late Triassic in age.  Admittedly aeolian deposits are hard to date; they tend to lack any significant ash deposits and detritial zircons (which can be used to constrain ages in other sedimentary rocks) are not really useful in sand dunes. That is what the Nugget Sandstone is - a deposit of windblown sand in western North America that began during the latest Triassic Period and persisted well into the Early Jurassic (see Sprinkel et al., 2011 for more details). This sand sea expanded as paleolatitude changed and western North America drifted further away from the equator and into the "dry belt" where warm, arid climatic conditions exist. This pattern can even be seen in the Late Triassic Chinle Formation at Dinosaur National Monument, as presented on at SVP this year (Irmis et al., 2015).

The first reports of the quarry (Chambers et al., 2011) suggested that Britt and colleagues at first assigned an Early Jurassic age to the deposit. This date was keeping with the general consensus that the Triassic/Jurassic boundary was somewhere within the Nugget. By 2012, however, it appeared that the teams views changed. That year Engelmann and others (note -the actual abstract doesn't appear to be available any longer) presented an abstract at the GSA conference in Charlotte, NC. In the title they state that a new drepanosaur has been found in the Nugget Sandstone and state that it has biostratigraphic importance. They also explicitly question the Jurassic age of the Nugget (they literally put a question mark in front of the word Jurassic) based on this new find. This new drepanosaur is pretty dang cool! The team expanded on it in recent SVP meetings (Chure et al., 2013; Chure et al., 2015). This critter seems to show highly derived characters shared only with Drepanosaurus (a European form) that indicate it was a specialized fossorial (digging) animal. The kicker here is that all other known drepanosaurs come from definitive Triassic strata. The Nugget drepanosaur comes from a quarry 55 meters above the last reliably dated strata (the Bell Canyon Formation, which sits between the Chinle and Nugget in northeastern Utah).

So what's the problem? Well this year the team again presented on some more spectacular fossils from the Saints and Sinners Quarry, including a large toothed pterosaur that is very closely related to the Early Jurassic European pterosaur Dimorphodon (Britt et al., 2015). This story has been picked up by the national media who have been reporting this site as being Late Triassic in age. Let's do a quick review of the evidence for a Late Triassic age.

Evidence of a Triassic Age of the Saints and Sinners Quarry

  • Presence of a drepanosaur
  • Presence of several small sphenosuchians
  • In a formation that is traditionally considered to span the Triassic/Jurassic Boundary

Okay...that's not really a convincing list. This is especially true if you are claiming that this extraordinary interdunal wetland deposit represents a Triassic assemblage unlike any other in western North America. In fact two of the "pros" can actually be taken as a "con" and the third I think is ambiguous.
Allow me to present a list of why I have concerns about a Triassic age for this quarry.

Why the Saints and Sinners Quarry may be Jurassic in age

  • In a formation that is traditionally considered to span the Triassic/Jurassic Boundary
  • Quarry located 55 meters above the last Triassic-dated rocks (~1/2 the thickness of the Nugget)
  • Presence of the most-derived drepanosaur yet discovered
  • Presence of a pterosaur that is most similar to a Jurassic pterosaur
  • Presence of a medium-large bodied theropod in the quarry in addition to a coelophysoid
  • Presence of several small sphenosuchians
  • No phytosaurs
  • No aetosaurs
  • No metoposaurs
  • Upper Nugget lacks a Triassic ichnofauna
Well, does this mean case closed? No. While my list may be longer it isn't the final word on anything. Several of these points rely on the absence of taxa like phytosaurs and we all know that the absence of evidence is not the evidence of absence. Still, taken as a suite of things, I am not convinced that this quarry is Triassic. There are a few ways that perhaps we could do to see if I'm wrong.

  • Phylogenetic analysis of the sphenosuchians - closely related to Chinle or Kayenta taxa?
  • Phylogenetic analysis of new drepanosaur compared to the still-unnamed Ghost Ranch form
  • Phylogenetic analysis of the theropods - are they closer to Coelophysis or later taxa?
  • Additional fieldwork to look for unambiguous biostratigraphic markers
To me this fauna looks like a typical Early Jurassic fauna from western North America with a drepanosaur thrown in. Could it be an impoverished Late Triassic fauna that also has several highly derived taxa in it? I suppose and I will happily eat my hat if that is the case. What a great collection of Triassic taxa it would be! With the data that have been presented thus far I just can't see it though.

Why does this matter? Timing is everything in evolution. One of the big ways we as paleontologists talk about paleobiogeography is in terms of dispersal and vicariance. Are animals (and plants, and fungi, etc.) slowly moving into new areas or are populations split up by new barriers, isolating groups that then adapt in their own directions? To put it in the context of the Nugget fossils, are we seeing evidence that many disparate clades were widespread in the Late Triassic, or are we seeing similar taxa from elsewhere in North America in the Early Jurassic adapting to new environments? These questions have serious implications for our understanding of the rate of evolution among all these groups. By tying down the date of the Saints and Sinners Quarry we will be better able to answer some of these questions.

Final caveat: this is all based off of abstracts, talks, and posters and conferences, some of which I was unable to attend or access (this is why people should archive their conference presentations on FigShare - but I digress). I am extremely excited to see the peer reviewed publications that should result from these finds. And it may very well be that their method for dating the quarry is more nuanced than they have already presented. As always, I suppose, "Wait for the paper."



Works Cited
Britt, B. B., Chure, D., Engelmann, G., Dalla Vecchia, F., Scheetz, R. D., Meek, S., Thelin, C., Chambers, M. A NEW, LARGE, NON-PTERODACTYLOID PTEROSAUR FROM A LATE TRIASSIC INTERDUNAL DESERT ENVIRONMENT WITHIN THE EOLIAN NUGGET SANDSTONE OF NORTHEASTERN UTAH, USA INDICATES EARLY PTEROSAURS WERE ECOLOGICALLY DIVERSE AND GEOGRAPHICALLY WIDESPREAD. Journal of Vertebrate Paleontology, Program and Abstracts, 2015 p. 97

Chure, D. J., Andrus, A. S., Britt, B. B., Engelmann, G. F., Pritchard, A. C., Scheetz, R., Chambers, M. MICRO CT IMAGERY REVEALS A UNIQUE MANUS MORPHOLOGY WITH DIGGING/SCRATCHING ADAPTATIONS IN THE SAINTS AND SINNERS QUARRY (SSQ) DREPANOSAUR, NUGGET SANDSTONE (LATE TRIASSIC), NORTHEASTERN UT Journal of Vertebrate Paleontology, Program and Abstracts, 2015 p. 107

Chure, D., Britt, B., Engelmann, G., Andrus, A., Scheetz, R. DREPANOSAURS IN THE DESERT: MULTIPLE SKELETONS OF A NEW DREPANOSAURID FROM THE EOLIAN NUGGET SANDSTONE (?LATE TRIASSIC - EARLY JURASSIC), SAINTS AND SINNERS QUARRY, UTAH: MORPHOLOGY, RELATIONSHIPS, AND BIOSTRATIGRAPHIC IMPLICATIONS Journal of Vertebrate Paleontology, Program and Abstracts, 2013 p. 106

Chambers, Mariah, Hales Kimberly, Brooks B. Britt, Daniel J. Chure, George F. Engelmann, and Rod Scheetz. "Preliminary taphonomic analysis of a Ceolophysoid theropod dinosaur bonebed in the Early Jurassic Nugget Sandstone of Utah." In Geological Society of America Abstracts with Programs, vol. 42, no. 4, p. 16. 2011.

Engelmann, G., Britt, B., Chure, D., Andrus, A., Scheetz, R. MICROVERTEBRATES FROM THE SAINTS AND SINNERS QUARRY (NUGGET SANDSTONE: ?LATE TRIASSIC–EARLY JURASSIC): A REMARKABLE WINDOW ONTO THE DIVERSITY AND PALEOECOLOGY OF SMALL VERTEBRATES IN AN ANCIENT EOLIAN ENVIRONMENT  Journal of Vertebrate Paleontology, Program and Abstracts, 2013 p. 122

Engelmann, George F., Daniel J. Chure, Brooks B. Britt, and Austin Andrus. "The biostratigraphic and paleoecological significance of a new drepanosaur from the Triassic-? Jurassic Nugget Sandstone of northeastern Utah." In 2012 GSA Annual Meeting in Charlotte. 2012.

Irmis, R. B., Chure, D. J., Wiersma, J. P. LATITUDINAL GRADIENTS IN LATE TRIASSIC NONMARINE ECOSYSTEMS: NEW INSIGHTS FROM THE UPPER CHINLE FORMATION OF
NORTHEASTERN UTAH, USA Journal of Vertebrate Paleontology, Program and Abstracts, 2015 p. 149

Sprinkel, Douglas A., Bart J. Kowallis, and Paul H. Jensen. "Correlation and age of the Nugget Sandstone and Glen Canyon Group, Utah." Utah Geological Association Publication 40 (2011): 131-149.

Tuesday, July 21, 2015

My Students Need Your Help

I'm going to cut right to the point here (in case the title didn't give it away). My students need your help. I know I am the goofy tooth blogger who writes about "Indominus rex" and little tiny teeth from the Triassic but the plain fact is that those little tiny teeth don't find themselves. In fact they like to stay hidden, the sneaky little fellows. My high school students in my paleontology program find the majority of them.

In case you didn't read my introduction post, I teach at Mission Heights Preparatory High School and run the nation's only paleontology program at a public high school. I am pretty dang proud of it and my students. We have been doing this since March of 2014 and we already have one publication with one of my students, another pre-print ready to go to review with student lead authors, and a student-led abstract accepted for presentation at the 75th Annual Society of Vertebrate Paleontology Annual Meeting in Dallas this year. All very exciting stuff and it has all been predicated on the field work we have been doing in the Late Triassic Chinle Formation at Comb Ridge, Utah.

In order to do this fieldwork, we have been relying on two things: rented vehicles, paid for by student fees and my personal truck. These two elements have allowed us to access field sites and bring back fossils to MHP but they have their drawbacks. Student fees create a burden on our students, especially in our low-income, rural community that we serve. Some of these students are classified as homeless. Most of our students are on free-and-reduced lunch, meaning that their annual family income qualifies them for government-provided school lunches. These are generally not kids who can afford a $75 fee to rent vehicles, get gas, and buy food. Several promising young scientists had to miss out on trips (and have since moved on from science all together) because their family lacked the means to support them in pursuing our fieldwork. This is a huge concern for me! I have trimmed by budget as much as possible but with the huge cost of renting vehicles for multiple days I cannot get my per-person cost down any lower for our regular spring fieldwork trips. If we care about having scientists accurately represent our society we should be concerned that low income students are dropping out of science because they feel they cannot participate.

The second drawback is in relation to my personal vehicle. It is a 2004 Ford Explorer Sport Trac. It is a great vehicle and has served me well but it has 186,000 miles on it. I was working at a quarry in Utah with the Natural History Museum of Los Angeles County last week and my truck malfunctioned. Now the fix was easy and relatively inexpensive, and since the crew had multiple vehicles they were not out of work while my truck was in the shop. My truck, however, was out of commission for a day and a half. On a multi-week trip this is not a huge deal but when we are working at Comb Ridge we are typically out for only two days. That is a huge blow! I was lucky enough to have my truck break down in Moab - that would certainly not happen with our Comb Ridge work since we rarely go into town. The nearest town, Bluff, also does not have a full-service auto repair facility and parts stores. In addition the NHMLA had multiple field vehicles available to get in and out of locations and haul gear. For our program we use my truck to haul all the gear and rented vehicles to haul all the students. If we had a breakdown with my truck in the field with students it could be a real disaster with no easy fix.

That is why I am asking for help. I am trying to raise $8,000 for a field vehicle for MHP. We have raised a bit over 1/8th of the total goal but we have a long way to go. I am hoping that if you care about students, paleontology, getting students involved in paleontology, or just creating a more science-literate society you will consider donating to our fundraiser. All money raised will go directly to the cost of a field vehicle or, if we are unable to purchase one, into renting field vehicles until the funds are depleted.

If you like learning about teeth, that is where the teeth come from. And I have more tooth posts coming up soon!